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Abstract

The aim of our research work is the development of an integrated platform for modelling and sim-
ulation of building operation systems. This platform uses hybrid automata which allows models
for continuous and discrete behaviours. A model-driven hierarchical hybrid automata behaving in a
multi-agent mode is adopted to provide an efficient and coherent modelling, it also facilitates system
integration. The paper introduces the modelling framework and provides the first results for mod-
elling and simulation of a simple Heating, Ventilating, and Air Conditioning (HVAC) system for a
single room.
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1 Introduction

The aim of a modern Building Automation System (BAS) is to enhance the functionality of interactive
control strategies leading towards energy efficiency and a more user friendly environment. In this context,
the BAS complexity is rapidly increasing due to the large number of objects deployed, e.g. sensors and
actuators and also to the integration of complex control strategies for different physical effects, e.g. light
and temperature. This integration is required because of the physical coupling of these effects.

System integration for BAS can be achieved using model-driven techniques. Indeed, constructing
models using a compositional model-driven approach is becoming more critical, given the increased
scale of systems that are being modelled, e.g. smart automation for large buildings or chip fabrication
plants. In such cases, using a component-based tool can significantly improve the speed, and reduce the
cost of modelling and verification. It can also help developing efficient optimizations.

On the other hand, computer simulation techniques can help to tackle the challenges due to the
integration of large heterogenous systems; it is increasingly gaining importance as a tool for optimization
and analysis of buildings and their control and energy systems.

Currently many software tools are dedicated to building performance simulation. Unfortunately they
lack flexibility and transparent modelling of control strategies. What is needed is an integrated simulation
platform that is able to simulate the user comfort and energetic aspects of a given building considering
predictive control strategies. This is especially important when considering the heterogeneous nature of
the systems involved in buildings.

The main challenge is to optimize energy usage while trying to provide adequate user comfort. Sev-
eral research and industrial works have been dedicated to this topic, they use different approaches, e.g.
Matlab/simulink [MAT, ], hybrid systems[G. Labinaz, 1996], Petri net formalisms[L. Gomes, 2007] or
finite state automata. Building energy simulation tools are also used to optimize energy usage. In



[P.E. Miyagi, 2002], [L. Gomes, 2007], two quite similar research works have developed integrated plat-
forms that uses Petri Net for modelling and simulation of control strategies in Intelligent Building. In
this context, the integration with other building systems can be achieved in a more systematic way con-
sidering a mechatronic approach (i.e. multidisciplinary concepts applied to the development of systems)

In this article we assume that building automation models can be represented using hybrid systems
models [G. Labinaz, 1996], since hybrid systems can represent both the discrete-value and continuous
differential-equation-based relations essential for such models. We show how we can use component-
based hybrid systems to model and simulate HVAC controller and components. In previous work we have
used the same framework for modelling lighting systems [A. Mady, 2009b]. We also have developed a
first version of a code generator that can auto-generate embeddable code for a distributed sensor/actuator
network [A. Mady, 2009a].

Our framework allows users to express preferences for interior lighting levels and temperature, and
the control system accommodates such preferences over all occupants within a zone. For example, given
a preferred temperature, the control system optimises energy usage by accurately controlling the heater
only when a zone is occupied and external temperature is insufficient.

The remainder of the paper is organized as following: Section 2 introduces our modelling platform
which uses compositional model-driven hybrid automata. In Section 3, we illustrate the integrated mod-
elling framework through a simple HVAC controller for a single room, we also outline the simulation
results. We end in Section 4 by giving a discussion of our work and outlining future perspectives.

2 Integrated Hybrid Modelling Platform

Hybrid systems are dynamic systems that exhibit both continuous and discrete behaviours. The continuous-
time dynamics are modelled using differential equations whereas discrete-event dynamics are modelled
by automata. They have the benefit of encompassing a larger class of systems within its structure, al-
lowing for more flexibility in modelling dynamic phenomena. Building systems are a perfect example
of hybrid systems where continuous and discrete dynamics are being used for modelling. For example
heat dissipation and luminosity follow a continuous dynamics whereas presence detection is of a discrete
nature.

In our work we show how we can use a component-based hybrid-systems modelling framework to
generate models for simulation and verification. Using the CHARON tool [cha, ], we assume that we can
create/redesign a system-level model by composing components from a component library [G. Gssler, 2003],
[J. Keppens, 2001]. We call a well-defined model fragment a component. We assume that each compo-
nent can operate in a set of behaviour-modes, where a modeM denotes the state in which the component
is operating. For example, a pump component can take on modes nominal, high-output, blocked and
activating.

We define two classes of components: primitive and composite. A primitive component is the sim-
plest model fragment to be defined. For such a component we specify the inputs I , outputs O, and
functional transformation ϕ, such that we have O = ϕ(I). A composite component consists of a collec-
tion of primitive components which are merged according to a set of composition rules [G. Gssler, 2003].
A set of (primitive/composite) components defines a component library. In this work we assume a com-
ponent library consisting of sensors, actuators, human-agent models, and building components such as
heaters, lights, windows, rooms, etc.

We demonstrate our approach on a simple heating model. This example illustrates the combination
of discrete events behaviour (presence detection, control switch on/off) and hybrid properties for the heat
dissipation control, i.e. where both discrete and continuous aspects are considered.

In the rest of the section we introduce the system architecture and we briefly describe the simulation
platform. We end by giving a short introduction to the CHARON tool-set.



2.1 System Architecture

As shown in Fig. 1, the system design flow starts by defining relevant scenarios to be operated within the
building. These scenarios are defined using the Unified Modelling Language (UML) [G. Booch, 1998].
The UML models are interpreted using specific models for simulations and analysis purposes. At this
level we allow an optimization loop to optimize the model at an early stage of the development. When the
simulation gives satisfactory results, the models are auto-translated into embeddable code to be deployed
over a distributed sensor/actuator network.

The integration process is performed through the implementation of a model-/service-based middle-
ware [K. Romer, 2002] platform allowing components connection and data exchange. All the different
components of the architecture collaborate with the requirements module.

Figure 1: System Architecture

2.2 Modelling and Simulation Process

The first modelling steps consist of specifying the requirements and system behaviour through UML
diagrams, for example Fig. 2 describes the use case for a simple HVAC system for a single room. This
example is discussed in detail in Section 3.1. According to the UML specifications, we model each sub-
system or service using hybrid automata. Most of the services are discrete-event-oriented, however some
systems are dynamic and need to be modelled using hybrid systems.

Figure 2: Use-case Diagram for the Heating System

CHARON offers several modelling features, in particular modularity and hierarchy which correspond
to our modelling approach. To simulate the models, we must model the environment, e.g., the behaviour



of the sensors and the people. The environment will provide a stimulus (control input) for the simula-
tion. In our work we consider a preference model over lighting and temperature as well. For this, we
have integrated the preferences inside the modelling; however, we have implemented an interface with
constrain solver to handle complex preferences.

The overall model is built in incremental way. The whole system or part of it can be simulated by
composing the relevant sub-systems as they would execute in reality, i.e. in sequence or in parallel. Once
the models are built and the interface with the preference solver is set, the simulation is executed and the
results can be analysed as given in Section 3.2.

2.3 CHARON tool

CHARON is a high-level language for modular specification of multiple, interacting hybrid systems,
and was developed at the University of Pennsylvania [cha, ]. The toolkit distributed with CHARON
is entirely written in Java, and provides many features, including: a GUI (Graphical User Interface), a
visual input language, an embedded type-checker, and a complete simulator. CHARON adopts a hierar-
chal modelling framework based on the statechart modelling technique. A hybrid system is described in
CHARON as follows [Y. Hur, 2002]:
Architectural hierarchy: The architecture of systems is described with communicating agents. Those
agents share information through shared variables or communication channels. Agents are either atomic
or composite.
Behavioural hierarchy: A mode is a construct for the hierarchical description of the behaviour; it has
well-defined control-, entry- and exit-points. Transitions between modes are enabled when a condition
called guard becomes true. CHARON provides invariants governing when a continuous flow satisfies a
condition, as well as differential and algebraic constraints representing continuous dynamics. The lan-
guage also supports the instantiation of a mode for the reuse of mode definitions.
CHARON variables: CHARON provides two types of variables, continuous (analog) and discrete. Ana-
log variables are updated continuously while time is flowing. Conversely, discrete variables are modified
instantaneously only when the modes of an agent change.

3 Case Study: HVAC system for a single room

In this section, we model and simulate a simple HVAC system for a single room. The room model
considers a radiator, a window and a wall facing the building façade. The controller sets the heater
through a valve actuator only when the room is occupied and the external temperature is insufficient.

3.1 CHARON Modelling

The HVAC system has been modelled using CHARON in a hybrid multi-agent fashion [M. Hadjiski, 2007],
[Y. Hur, 2002]. Following the scenario specification in Fig. 2, the system has been modelled using two
kinds of agents as shown in Fig. 3. Firstly environment agents used to test the behaviour of the controller
and to provide a stimulus (control input) for the simulation and second control agents that are used to
model the behaviour of the control system.

For the environment modelling, as much as the modelling is close to reality, the controller can accu-
rately be evaluated. In our model, we have considered four environments; Wall, Window, Radiator and
Indoor Air [B. Yu, 2004], [KK. Andersen, 2000] as following:

1. Wall Model: One of the room walls is facing the building façade which implies heat exchanges
between the outdoor and indoor environments. In general, a wall can be modelled using several
layers, where more layers the wall is splitted, more realistic model is achieved. However consid-
ering too many layers will increase the complexity of the model. In our case, one layer has been



Figure 3: System Architecture for the HVAC Model

considered using the differential equation, Eq. 1.

ρwallVwallcwall
dTwall

dt
= αwallAwall(Texternal − Twall) (1)

2. Radiator Model: One of the most popular heating devise is the radiator that uses the temperature
deference between the water-in and water-out in order to heat the room. Moreover it exchanges
temperature with its environment. Here we assume that the radiator is fixed on a wall that does not
exchange temperature and hence it has negligible effect on the radiator, therefore the indoor air is
the only effective component on the radiator as shown in equations: Eq. 2 and Eq. 3.

Mwatercwater
dTradiator

dt
= m.

watercwater(Twaterin − Twaterout)−Q (2)

Q = Qair = αairAradiator(Tradiator − Tair) (3)

3. Indoor Air Model: In order to model the indoor temperature propagation, all the HVAC compo-
nents have to be considered as they exchange heat with the air inside the controlled room following
the equations: Eq. 4, Eq. 5, Eq. 6, and Eq. 7.

ρairVaircair
dTair

dt
= Qair +Qwall +Qwindow (4)

Qwall = αairAwall(Twall − Tair) (5)

Qair = αairAradiator(Tradiator − Tair) (6)

Qwindow = αairAwindow(Twindow − Tair) (7)

4. Window Model: A window has been modelled to calculate the solar energy and the glass effects
on the indoor environment. Since the glass capacity is very small, the window has been modelled
as algebraic equation, Eq. 8, that calculates the heat transfer at the window node.

αair(Texternal − Twindow) + αair(Tair − Twindow) + qsolar = 0 (8)

In relation to control modelling, Fig. 4 shows the linear hybrid automata [Henzinger, 1996] of
the main controller agent used to control the temperature inside the controlled room. Based on a PI-
Controller [Cooper, 2008], the indoor temperature is adapted by actuating the radiator valve with the



optimum occlusion degree in order to achieve the predefined user preference as explained in Eq. 9, Eq.
10, Eq. 11, and Eq. 12.

A(t+ 1) = A(t) + α(t) (9)

α(t) =



S(t)− U(t)
S(t)

, for S(t) > U(t) + ε (10)

−1× U(t)− S(t)
U(t)

, for U(t) > S(t) + ε (11)

0, for |S(t)− U(t)| ≤ ε (12)

Where:
A(t): Actuation setting for the valve actuator.
U(t): Sensed temperature.
S(t): Optimal preference settings.
ε: Acceptable temperature margin.

Figure 4: PI-Controller Hybrid Automata

3.2 Simulation Results

In this section, we provide the simulation results for the HVAC system (Fig. 5). The Charon model
described earlier and its environment have been simulated using the Charon simulation tool-set. Fig.
5(a) shows the wall temperature response, when the outdoor temperature (5 ◦C) is less than the indoor
one (8 ◦C), the wall temperature follows a linear differential equation with a negative slope.

In the beginning, the actuation value of the radiator valve is equal to zero (Fig. 5(e)) that means the
valve is completely closed and the controller still did not receive the current temperature value from the
sensor, therefore the radiator temperature is equal to the initial room temperature (Fig. 5(d)). However
the indoor temperature and the glass temperature are decreasing because the temperature decreasing rate
at the wall is not overcome by heat from other components (Fig. 5(b), Fig. 5(c)). When the controller
senses the indoor temperature, which is less than the optimal, it increases the valve actuation value to



80% occlusion and hence the air temperature increases as well. In order to reach the user preference (15
◦C), the controller refines the actuation value considering ±1 ◦C acceptable margin.

The simple models we have shown here can be easily applied to more complex HVAC systems since
models of almost arbitrary complexity can compositionally be generated from the simple components.
Hence the system can be easily scaled up (if the simulator can handle the complexity of larger systems).
However, if embedded controls are generated by hand, scaling up becomes virtually impossible since it
is not humanly possible to hand-generate the complex scenarios possible in large systems. Note also that
modeling complexity depends also on the model’s fidelity; hence, model fidelity of composed models can
been increased (or decreased) by changing the component models to higher- (or lower-) fidelity models.
Such changes of system-level model fidelity are also not possible when hand-generating controls.

(a) Wall Temperature (b) Indoor Air Temperature

(c) Window Glass Temperature (d) Radiator Temperature

(e) Actuation Percentage of Valve Occlu-
sion

Figure 5: Simulation Results

4 Conclusions

In this paper we have introduced a platform for modelling and simulation of building operation sys-
tems. This platform is based on model-driven hierarchical hybrid automata which allows modelling for
continues and discrete behaviours. We showed that hybrid systems simulation together with composi-
tional model-driven techniques provides a key approach for efficient modelling and design for embedded
models. In addition, this approach provides a clear mechanism for system integration.

As a future work, we intend to model and analyse an integrated system that involves lighting and
heating control based on several factors including presence sensors, area occupancy, user preferences,
etc. We also consider applying this approach to model, simulate and analyse more complex HVAC
systems. This is possible since we are continually integrating existing library models and using reference
models from the literature, rather than creating controls from scratch using hand-based approaches.



The benefit of model-based development for energy efficient controls constitutes an important re-
search topic that we intend to pursue in future work. We plan to demonstrate the overall platform in the
UCC Environmental Research Institute (ERI) building, which is the ITOBO Living Laboratory [ERI, ]
[ERI, ].

5 Nomenclature
Symbol Discerption Unit
Twall Wall temperature ◦C
Texternal Outdoor temperature ◦C
Tradiator Radiator temperature ◦C
Tair Indoor temperature ◦C
Twindow Glass temperature ◦C
Twaterin Water-In temperature to the radiator ◦C
Twaterout Water-Out temperature from the radiator ◦C
ρwall Wall density kg/m3

Vwall Wall geometric volume m3

αwall Wall thermal conductance W/(m2.K)
αair Indoor air thermal conductance W/(m2.K)
Mwater Water mass Kg
cwater Water specific heat capacity J/Kg.K
cair Indoor air specific heat capacity J/Kg.K
cwall Wall specific heat capacity J/Kg.K
m.

water Water mass flow rate throw the radiator valve Kg/s
Q Pseudo-thermal state heat for the components attached to the radiator J
Qair Indoor air pseudo-thermal state heat J
Qwall Wall pseudo-thermal state heat J
Qwindow Glass pseudo-thermal state heat J
qsolar Solar energy w/m2

Aradiator Radiator geometric area m2

Awall Wall geometric area m2
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