
Abstract

We show how to use a Building Information Model (BIM) to structure fault detec-

tion and diagnostics (FDD) models for building applications, and also how BIM data

can be used for learning model parameters for updating the FDD parameters following

building commissioning. We propose an approach for generating FDD rules using a

generic meta-model together with the data defined in a BIM or Building Management

System design database. Our meta-model is a detailed model that identifies a key set

of properties of a system, e.g., connectivity and functionality of the devices that com-

prise the system. We then show how we can tune the parameters of such FDD rules

using data from a building simulation model, or from actual building data collected in

a data warehouse. We illustrate our approach using a lighting systems model within

an intelligent building application.

Keywords: fault detection and diagnostics, building information model, parameter

estimation.

1 Introduction

A modern Building Information Model (BIM) collects various data during the oper-

ational lifetime of a building. From design time, data for the building geometry, the

HVAC design, and the building automation systems can, for example, be stored using

a standard format like IFC [1]. The actual building performance measures, which are

collected during runtime are stored in databases or data warehouses of the building

management system (BMS). This broad variety of data cannot only be used for analy-

sis tasks like energy simulation, building performance analysis, facility management,

and diagnosis, but also allows new holistic design approaches of these tool chains.

For example, a Fault Detection and Diagnostic (FDD) [2] tool for a specific build-
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ing is usually created from modules that implement common functions, e.g., threshold

detection, anomaly detection, condition monitoring, control cycle diagnosis, etc. One

key drawback to generating model-based fault detection and diagnostics for large sys-

tems is the cost of constructing appropriate system models. There are two sources to

the difficulty of model construction. First, there is the need to create FDD modules

for each element to monitor, and second, there is the need to tune the FDD parameters

to the actual building application.

Creating the initial FDD models requires comprehensive information of the build-

ing, the HVAC system, the data points in the building automation system, the data

bases or data warehouses of the building management system — just the kind of in-

formation available in a modern BIM like the one introduced in the paper.

Tuning the FDD parameters to the actual building application is a second difficult

task. This is necessary to ensure that we minimize false alarms, yet still catch real

faults. This task is more general, as the entire BMS needs to be set-up and customised

for each specific project, and this laborious task is one of the main deficits of current

BMSs [3, 4].

We assume that parameter estimation will occur in two phases: (1) initialization,

and (2) tuning. During the initialization phase, we compute the initial values of the

parameters using data simulated by a model. In our case, we use the lighting model

described in Section 3. Using a simulation model speeds up the process of initializa-

tion, and it allows us to simulate faulty data (just by setting fault conditions in the

model to true); in contrast, to obtain faulty data in a real building would require con-

siderable work, and potentially would entail destructive testing. During the tuning

phase, we take the initial rules and fine-tune the thresholds using data collected from

the real building, as stored in the data warehouse.

The main contribution of this work is showing how to use the BIM to structure the

diagnostics models, and also how BIM data can be used for learning model parameters

for updating the parameters following building commissioning. We propose an ap-

proach for reducing the need to construct multiple models by using a meta-modeling

and model-transformation approach. We generate FDD rules using a generic meta-

model, which is a detailed model that identifies a key set of properties of a system.

For example, we describe a meta-model that captures, among other things, connectiv-

ity and functionality of the devices that comprise a system. Given such a generic meta-

model, we describe how how we can auto-generate an application-specific model, one

defining FDD rules, through the use of building design data, such as the data defined

in a BIM or Building Management System design database. We can then tune the

parameters of such FDD rules using data from a building simulation model, or from

actual building data collected in a data warehouse.

The article is structured as follows. Section 2 describes our FDD auto-generation

software architecture. Section 3 introduces an example that we use throughout the ar-

ticle to illustrate our approach. Section 4 describes the notion of BIM that we adopt in

the article. Section 5 outlines our FDD rule-generation approach. Section 6 describes

our parameter estimation methodology, given FDD rules. Finally, we summarise our
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contributions in Section 7.

2 System Architecture

The proposed fault detection and diagnosis approach is described in Figure 1. As men-

tioned earlier, our approach is based on a multi-modelling platform that auto-generates

various models dedicated to different use. Starting from the design information in the

BIM like device lists of the HVAC and building automation system a meta-model

is abstracted. From this meta-model further models for simulation and analysis are

generated, using models such as hybrid systems models for simulation, and threshold

detection approaches for diagnosis. The simulation models may then be translated into

embedded code to be deployed in the wireless sensor/actuator network (WASN). The

diagnosis models are linked with a diagnosis engine that detects faults in the actual

measurements of the automation system which are collected in the data warehouse

part of the BIM. The threshold that has been violated and the related zone are com-

municated to the diagnosis engine in order to isolate the faulty component using a

model based diagnosis techniques. The maintenance component takes the output of

the diagnosis engine to schedule maintenance activities.

We divide our diagnosis-generation approach into two parts: (1) generation of fault

detection rules, which will indicate anomalous conditions; and (2) generation of di-

agnosis models, which isolate the faults given the anomalous observations from (1).

In this article, we focus on the auto-generation of fault detection rules; the details of

diagnosis model-generation are presented in [5]. To monitor the condition of a zone

in a building, one needs to have some representation that would indicate when key

parameters are exceeded.

Two key issues for such a representation are: (1) the structure of the fault detection

rules, and (2) the values of the thresholds. We assume that we will adopt a standard

template for the threshold detection, and use the BIM to auto-generate the rules pa-

rameters and the building-specific parameter thresholds.
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3 Example: Lighting in a Building

We illustrate our approach using an example for a lighting control in Figure 2. We

assume we have a room with an illumination sensor D1, which measures the light

level E and a occupancy sensor D2 detecting the occupancy P . A controller D3 is

attempting to maintain a setpoint light level of W in the room using the dimmable

lamp D4 with the dim value D, if occupants are present; any internal lighting is off if

no occupants are present.

LX
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D1 Illumination 
sensor

D2 Occupancy Sensor

D3 Controller

IFC

Location Data:
• Location of 

Devices in Rooms

(a) Room with the devices
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L
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L Illumination Value
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C Plant Control Value
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BAS Design

Interaction Data:
• Interaction of Devices

(b) Device interaction design

Figure 2: Example scenario of a light control

The Fault Detection and Diagnosis has the aim to detect and analysis faults in the

lighting system for this example. An illustration is given in Section 5. For example,

this the fault should be detected, that occupants are present in the room, but the light

is not on, even if it is to dark.

4 BIM

The term Building Information Model / Modeling (BIM) is defined broadly, so its

meaning in this paper should be clarified. We see a Building Information Model as

the digital collection of a building’s data during its life cycle and Building Informa-

tion Modeling as the process of creating this data. A Building Information Model

usually comprises the geometrical model of a building, the quantities and properties

of its components as well as related design information. For this kind of information

standard exchange formats like Industry Foundation Classes (IFC) [1] or aecXML [6]

exist that aim to enable tools to exchange and reuse this information over the building

life cycle.

Also other data relevant in the building life cycle can be seen as part of the BIM

using the above definition. For example, dedicated design information can be stored
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and used in a Building Automation Systems (BAS). The building automation system

implements the monitoring and control of the Heating, Ventilation, Air-Conditioning

(HVAC) system, lighting, access control, etc. A BAS can contain several thousands

of devices communicating over standard network technologies [7]. Due to their size,

these systems are designed using specialized design tools. These design tools share

the same databases to store their designs. Open-design databases have been devel-

oped, e. g., [8], to allow the different specialists working on an integration project to

exchange design information; this is similar to the development of BIM in the general

construction domain. Designs for building automation systems can also be exported

to IFC [9] from such databases.

A basic example for the BAS design of the lighting control loop is given in Fig-

ure 2(b). The design shows the individual devices and their datapoints. In the design

tools, these datapoints are logically connected to form the application system. For

example, the connection of the illumination sensor (D1) to the controller (D3) means

that the illumination level E is transmitted to the controller; the connection of the set-

point value S from the controller output to its own input indicates that the controller

possesses a user interface that enables setting the illumination setpoint. The design

database of the BAS contains all the information about the devices, their interaction,

and the data exchanged.

Also, dynamic data is typically collected during the operation of a building. The

data measured in the BAS from sensors, controllers and actuators is usually collected

in a database in the Building Management Systems (BMS). This data is analysed for

online Fault Detection and Diagnosis, among other uses.

Recent work has extended the simple DataBase concept to a Data Warehouse to

support building performance analysis already on the data storage level [10]. There-

fore, the data warehouse also contains information about the building structure (floors,

rooms), the location of sensors in the building, etc. This allows semantic addressing of

queries like: “Compute the energy consumption of the lights in room 123 for march.”.

As parts of this information is contained in IFC, a parser has been implemented to al-

low the importation of information into the data warehouse. More information about

the data warehouse can be found in [11].

5 Generating an FDD system from a BIM

This section describes how we create an FDD system from the BIM. The main steps of

the generation are shown in Figure 3, and will be detailed in the course of this section.

The approach is demonstrated using an example of threshold detection, which is the

simplest approach for fault detection. We show how rules to generate thresholds for

certain parameters. If the resulting rules are triggered by a threshold being exceeded,

a fault is instantiated.
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5.1 Rule Syntax

We first describe the syntax we adopt for our rules, and then we outline how we use

templates to instantiate rules according to this syntax.

Threshold detection rules have a structure such that a mode-value, e. g., M = bad,

logically corresponds to sensor/actuator settings, i.e., (M = bad) ⇔ (Act = off) de-

notes that an actuator Act is stuck off when its failure-mode status M is bad. Examples

of such rules for the lighting domain include:

[(MA = bad)] ⇔ [(P = f) ∧ (D > δ1)] (1)

[(MA = bad)] ⇔ [(P = t) ∧ ((W − E) > δ2)] (2)

[(MA = bad)] ⇔ [(P = t) ∧ ((E − W ) > δ3)] (3)

Here the first rule uses a threshold δ1 to indicate that the internal lighting is in-

correctly turned on when no occupants are present. The cause can be a erroneous

controller or information about the device status. The second rule signals a fault that

the light level is to low when a person is present. It may have its cause again in the

controller, or incorrect information, but also in a broken actuator (lamp). The third rule

detects the fault if the light level exceeds the set-point W more than some threshold

δ3. The causes are manifold again.

These generic rules will have to be instantiated with real sensors and actuators

defined in the BIM. This means that for the three rules above the queries to access the

values for the occupancy P , illumination E and set-point W in the data warehouse

need to be defined. Also, the parameters (δ1, δ2, δ3) ≥ 0 require values. These values

can be fixed if the rule if the value does not need to be changed; the values may be

exported from other design information (e. g., value ranges for rule (4) are usually
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defined in the BMS design); or alternatively, we will need to use some parameter-

estimation techniques for actual data.

5.2 BIM to Rule Template Transformation

The first step of setting up an FDD system is to partition the system into small ele-

ments that can be handled separately, in order to reduce the complexity. This requires

understanding the elements of the system, and their interaction. Consider the example

of the light control loop of Figure 2, which consists of the illumination sensor, the

occupancy sensor, the controller and the actuator/lamp. The combination of different

values from different devices in the rules (1) to (3) already demonstrate that the fault

detection requires information about this interaction.

However, in a building with several rooms equipped with such a light control, defin-

ing the rules for each room is a laborious task. It requires: (1) checking in the BAS

design which devices are related to each other, especially if there are multiple sensors

or actuators in a room; (2) identifying each device and datapoint in the BMS database

or data warehouse, and their association to the rules; and (3) defining the parameters

of the rules.

Device

(Sensor in Room 1)

DeviceType

(Cylon LightSensor)

DataPointType

(Illumination VariableType)

DataPoint

(Illumation DataPoint)

Rule Level

Type Level

Instance Level

ConnectionPattern

(Illumination Control Loop)

*

*

*

*

*

RuleTemplate

[(MA=bad)]�[(P=f)∧(D>δ)]
*

DPTypeConnection

(Sensor->Controler)
*2

*

*

DatapointConnection
(Sensor->Controler)

*2

Modelled in the Data Warehouse Modelled in the BMS

Modelled in the Meta-Model

Figure 4: UML class diagram of the data model used for the generation of rules

Figure 4 shows the data model used to generate such rules automatically. A Rule-

Template applies to a ConnectionPattern, which defines a group of interact-

ing devices via their datapoints, e. g., for the “light control loop”. To allow the defi-

nition of such patterns, not only for specific devices but in a generic way, the pattern

is defined by a set of DPTypeConnection of abstract DataPointTypes, like

the connection of any illumination datapoint output to any light controller input. The

abstract DataPointTypes belong to abstract DeviceTypes. If a specific illumi-

nation sensor and controller are identified as belonging to such a generalized type,

then the pattern can be identified and applied.

The generator therefore uses the input from different sources of the BIM. The de-

vices and their abstract device types are modeled in the data warehouse. The general

types are identified during the import from IFC into the data warehouse, using either
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the name of the manufacturer and device classes, or as modeled later by hand in the

data warehouse.

If devices are located in the same room match a pattern, then we can deduce that

they also communicate with each other. As this assumption is not unambiguous, es-

pecially if the room has multiple sensors, we can export the interaction directly from

a BMS design, or use approaches like [9] to export them via IFC.

5.3 Rule Templates

We describe some templates that are relevant to this domain, to illustrate our approach.

In the lighting model, we focus on the sensors and actuators used to control the lights

and blinding. We examine several classes of rules: (1) sensor rules, (2) actuation rules,

(3) delay rules, and (4) sensor/actuator rules.

5.3.1 Sensor Rules

Sensor out of range This rule covers the case when a sensor (S ∈ {E,P}) is reg-

istering a value outside of its normal operating range. So if the minimum and

maximum values of the nominal range are Smin and Smax respectively, we have

a rule such as

[MS = OK] ⇔ [Smin ≤ S ≤ Smax]. (4)

No sensor output This rule covers the case when a sensor outputs no data. In this

case we have the rule that the timestamp T (S) of the last sensor value is older

than τS , which is a multiple of the common sampling interval:

[MS = OK] ⇔ [T (S) ≤ τS]. (5)

Sensor mismatch This rule covers the case when two or more sensors, which should

correspond on their outputs, register inconsistent outputs. In this case we as-

sume that the sensors will agree on their outputs within a tolerance δt:

[(MS1
= OK) ∧ (MS2

= OK)] ⇔ [|S1 − S2| ≤ δt]. (6)

5.3.2 Actuation Rules

We must create rules for detecting whether the correct controls have been initiated,

like rule (1).

5.3.3 Delay Rules

Often the delay in systems need to be considered in fault detection as well. For ex-

ample, a person changes the set-point of the control from 500 lx to 800 lx. But, the

light controller changes the dim level of the lamps only slowly, which is a “comfort”
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(effect) feature by some controllers, and the light needs several seconds to adjust to

the new set-point. To avoid to detect such a normal change as fault, the parameter δ2

in rule (2) for example should be at least larger then the 300 lx set-point difference.

This is quite large, especially if in stable state (after the light adjusted) a light variance

of maximal 100 lx should be ensured. For such cases, rule (2) is extended by a delay

parameter τ that tolerates small variances within τ , but creates a fault if the difference

stays longer than δ2

[(MA = bad)] ⇔ [(P = t) ∧ ((W − E) > δ2) for (t > τ)]. (7)

5.3.4 Sensor/actuator rules

The typical scenario that we address is when the desired actuation setting disagrees

with the sensor output. For example, this might arise if the light actuator D is on

(D > 0), but the sensor E registers a very low light level.

[(MS = OK) ∧ (MA = OK)] ⇔ [(E ≤ δ) ∧ (D > 0)]. (8)

For this rule, violation implies that the light actuator and sensor cannot both be nomi-

nal.

The next rule covers the case where no people are detected, and the actuator must

be off (in nominal conditions):

[(MS = OK) ∧ (MA = OK)] ⇔ [(P = f) ∧ (D = 0)]. (9)

6 Threshold Parameter Estimation

This section describes how we estimate the threshold parameters for our rules.

6.1 Parameter Estimation Process

In the following, we will characterise our estimation of parameters for FDD rules

as a task in system identification [12]. Assume that our system can be defined using

y = φ(u,θ), where y is the vector of output signals, θ is the vector of parameters, and

u is the input vector. Further, assume that we model our system using ŷ = φ̂(u,θ).

If we assume that the actual system has output y, and the model has output ŷ, our

task is to determine suitable values of the parameters θ̂ such that φ̂(u,θ) = φ(u, θ̂)
[12]. To accomplish this, we assume that a residual signal is obtained as a difference

between the outputs of the system and the model, i. e., r = y − ŷ. The simplest

model-based residual generation procedure reduces to system identification, and en-

tails checking the norm of the residual signal ‖ r ‖.

In the first instance, we assume that we are generating rules within a building com-

missioning scheme. In this case, since there is no building from which to collect data,
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we use a simulation model to act as the “real system”. The “model” corresponds to

the specification of the set of rules. We aim to estimate the parameter values for the

rules, and we do this by using the simulation model to generate a set I instances of

data, and then conducting data mining on I to estimate the parameters θ̂.

Once the commissioning process has estimated an initial set of FDD rules, we can

then move into a parameter-tuning phase, in which we assume that we obtain data from

the actual building sensors/actuators (termed the system y), and the model consists of

the set of rules. In this phase we update the parameters estimated during the inference

for the “commissioning process”.

We now summarise the approach we use for parameter estimation. We have two

competing objectives: (1) minimise the norm of the residual signal ‖ r ‖ for each rule,

and (2) distinguish a normal operating region using bounds on the parameters, in order

to avoid rules generating false alarms by having point-estimates for key parameters.

For example, if we want to control the light level to a setpoint α, we want to include

some range around α, i. e., [α− ε1, α+ ε2], which defines normal operating conditions

(given noise in sensing, etc.). In this case, we want a general mechanism to estimate

the values of α, ε1, and ε2.

During the first phase of parameter estimation, corresponding to “building commis-

sioning”, we take cases relating to the normal operation involving the setpoint α, and

estimate its mean µ and standard deviation σ. Our decision then involves the interval

around α which defines normal operation. In implementing such a setpoint-based rule,

we assign to ε1 and ε2 either a 3σ limit, which defines about 99.7 % of the samples as

normal, or a 4σ limit, which defines about 99.99 % in terms of normality.

During the second phase of parameter estimation, corresponding to “parameter tun-

ing”, we take cases of real data relating to the normal operation involving the setpoint

α, and repeat the process described for phase 1. This parameter tuning can take place

periodically during operation of the real system, using data stored in the data ware-

house.

6.2 Data Generation using a Simulation Model

Based on the lighting control shown in Figure 2, we have implemented a simulation

model using a hybrid systems representation [13]. Hybrid systems representations

describe both the discrete and continuous aspects of a simulation, which are critical

to building systems. In our example, the light diffusion equations follow a continuous

process, whereas there are discrete outputs from sensors about presence of people in

a zone.

The tool that we have adopted for this modeling is Charon [14]. Charon is a hybrid

modeling language that supports the construction of hierarchical, component-based

hybrid systems models. Each primitive system component is called an agent; concur-

rency of agents means that agents can communicate with other agents asynchronously.

Charon describes behavior in an agent using the formalism of a mode, which is a hi-

erarchical hybrid state machine that can have submodes and transitions connecting
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them.

Charon runs simulations by alternating a series of discrete and a continuous steps

for each agent. A discrete step consists of a series of transitions from the active atomic

mode to another atomic mode. This flow of control is determined through the assign-

ment of mode variables, which are determined by mode invariants, transition guards,

or transition actions. We assume that the continuous variables evolve according to al-

gebraic and differential constraints governed by the active modes, and this continuous

evolution may also trigger discrete mode changes.

Given a set of initial conditions, we can run a simulation in Charon, from which

we can sample data at pre-defined time-points to generate data. By appropriately

setting the modes in Charon, we can simulate either normal or faulty behaviours, thus

generating data for learning both classes of operating condition.

6.3 Example

In this section we illustrate through our simple lighting system the data mining anal-

ysis when considering the simulation results obtained using a simulation tool called

Charon. Charon is a high-level language for modular specification of multiple, inter-

acting hybrid systems, and was developed at the University of Pennsylvania [14]. The

toolkit distributed with Charon is entirely written in JAVA, providing many features: a

Graphical User Interface (GUI), a visual input language, an embedded type-checker,

and a complete simulator.

In the following, we first present the Charon model for the lighting system and

then the data mining analysis on the simulation results where erroneous behaviour is

injected.

6.3.1 Charon Model for the Lighting System

The example in Section 3 has been modelled and simulated using Charon tool [14].

The model computes lighting control levels, based on sensor data for occupancy and

ambient light.

The basic Charon model for our lighting system consists of a system agent with two

concurrent control agents: a simple controller for the interior light (SwitchControl)

and another simple controller for the blinding (BlindingControl). Each control

agent contains one top-level mode to describe its behaviour. Figure 5 shows the archi-

tectural and behavioural hierarchy of the simple lighting system.

The top-level mode of the SwitchControl agent contains transitions between

two submodes: on and off. Both modes are empty, and for our simple example the

behaviour could be modelled with only one submode (in which case transitions start

and end in the same submode).

In the Charon model the light level in the room is influenced by two parameters:

the external light (regulated by the blinding controller) and the artificial internal light.
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Figure 5: Charon model of a simple lighting system

The external light intensity is additionally influenced by several disturbances. When

considering a correct behaviour for the overall system, we obtain the result depicted in

Figure 6. This shows shows how the controller changes the internal light of the lamps,

depending on the external light intensity, in order to maintain a set-point of 500 lx,

which is denoted by 0.5 on the y-axis of Figure 6.

Figure 6: Internal Light vs. External Light (in 1000 lx)

6.3.2 Parameter Estimation from the Simulation

The parameter estimation is demonstrated for the δ2 parameter of rule (2). The pa-

rameterisation must trade off two objectives, by ensuring: (1) a high detection rate of

faults (small δ2), and (2) a low rate of false alarms (large δ2). To find a good set of

parameters within this trade-off, it is usually necessary to analyse the signal behavior.

Figure 7 shows an example of the simulation results of a faulty light control. The

set-point W is constantly at 500 lx, as the office is occupied. The controller tries to

hold this value, given various influences, such as a noisy light level (e. g., see time

240–280 s). However, the illumination E drops to 400 lx from time to time, due to a
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Figure 7: Simulation results for a faulty light control

loose contact at a lamp, an error at the controller, or at the sensor. These faults should

now be detected with rule (2), but the noise should be ignored. Analysing the signal

visually, it is clear that δ2 should be around 75 lx for this example. However, our

objective is to have a general mechanism to automatically detect the parameter δ2, in

order to simplify the set-up process during design time and to optimize the parameters

for all individual rooms of a building, given their specific influences and dynamics

during run time.

Therefore, a fault-free sample from the simulation is used to analyse the parameters

of the noise. Figure 8(a) shows the histogram of the fault-free behavior. In most

cases the controller is able to hold the set-point at 500 lx, which results in the peak

at 500 lx. The noise is normally distributed, and the signal has a standard deviation

of σ =15.8 lx. This standard deviation is used to parameterise δ2 as introduced in

Section 6.1. δ2 is set to a 4σ limit (63.2 lx), as that would tolerate 99.99 % of an ideal

normally-distributed signal as “nominal” i. e. not faulty.

Figure 8(b) shows in contrast the histogram of the faulty behavior in Figure 7. The

peak at 400 lx is caused by the frequent faults and results also in a changed mean value

µ and a increased standard deviation σ. These changed properties of the distribution

are also the reason why for the rule parameterisation of a fault-free simulation run is

used to avoid the adaption of the parameters to the faulty behaviour.

Using an approach similar to this building commissioning approach, we plan to

create a module that periodically analyses the operational data, in order to tune the

rules to the properties of the real data. To avoid learning incorrect behavior, the anal-

ysis process should only if the sampled period creates a set of error-free rules. Then

the data form that period can be analysed, and the parameters can be automatically

updated if they differ, but nor significantly, from the last value; with significant differ-

ences,s the user need to be informed about the change of the system behavior and the

resulting rule parameters.

This given example for the parameter estimation of the light control is quite easy,

as it is a very fast process and delays can be neglected. For slower processes with

a significant delay, e.g., a temperature control, the paramterisation is more complex,
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Figure 8: Histogram of the illumination values E from the simulation

as the steady state and change state need to be considered, as discussed in rule (7).

Approaches like [15] allow the identification of these states, and the specific param-

eters, respectively. The time delay τ in rule (7) can then also set in relation to the

step-response time of the system.

7 Summary and Conclusions

We have described a methodology for automatically generating FDD rules from pre-

viously defined building information model, such as the design information contained

in IFC, a BMS and/or the runtime data stored in data warehouse, thereby reducing

the need to construct FDD models by hand. Our proposed approach consists of two

phases: first we generate the FDD rules based on rule templates, and second we tune

the parameters in the rules using data from a building simulation model, or from actual

building data collected in a data warehouse. In the first phase we use building-system

meta-models, which denote device functionality and connectivity, in conjunction with

BIM/BMS specifications for an actual building, to generate the rules. In the second

phase, we tune the rule parameters, first using data generated from a building simu-

lation model; we can then update the parameters’ values on a continuous basis using

data collected from the building, e. g., as stored in a data warehouse.
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